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Abstract

Standard models in political science require scholars to make strong assumptions about
the data generating process, often with limited guidance from theory or background
knowledge. Modern machine learning approaches allow researchers to take a more
agnostic approach to model building, but often fail to provide natural measures of
uncertainty for key quantities and make it difficult to encode a priori knowledge.
In this paper, we introduce the powerful Gaussian process (gp) framework, which
offers a satisfying compromise between the restrictive assumptions of traditional linear
models and the highly agnostic assumptions embedded within many machine learning
methods. We begin by introducing Gaussian process regression (gpr), noting that
the vast majority of linear models already in the literature are actually special (and
restrictive) cases of gpr. We then illustrate how to leverage the power of gps to build
more flexible – but structured – models in the presence of clustering and spatiotemporal
autocorrelation.



1 Flexibility versus structure

Social scientists are typically interested in learning substantively-motivated quantities such

as marginal effects, first differences, or treatment effects in settings where they are hard

to isolate accurately from background factors such as clustering, temporal autocorrelation,

or spatial confounding. For example, Blair, Di Salvatore and Smidt (2023) asks whether a

UN peacekeeping mission can promote democracy in countries experiencing a civil war. In

this case, prior literature indicates that there are multiple possible confounding variables

to take into account (e.g., poverty, reliance on natural resources, regional instability, etc.).

Furthermore, there are additional pitfalls requiring researchers to account for spatiotemporal

autocorrelation as well as clustering at the country level.

In these settings, scholars face a dilemma. Relying on traditional methods, researchers

can build some variant of a linear model that incorporates specific structures they believe

are relevant to the question at hand. Common solutions might be including fixed or random

effects, controlling for confounding variables such as time (e.g. Paglayan, 2021) or latitude

(e.g. Ahmed and Stasavage, 2020; de Kadt and Larreguy, 2018), or including spatial or

temporal lags (e.g. Acemoglu et al., 2008; Di Salvatore, 2019).

The advantage of these models is that they are readily available, simple to estimate, easy

to interpret, and allow the researcher to encode strong a priori knowledge about the data

generating process. The disadvantage, however, is that they require researchers to make

firm commitments to specifications even where there is little background knowledge to guide

such decisions. What variables should be included? Should they be entered in linearly, with

polynomial terms, or interactions? Should we control for lagged values of the outcome, and,

if so, for how many previous periods? These and other questions must often be answered

with limited guidance from theory and are often consequential to the results.

An attractive option in these settings is to rely on more flexible machine learning method

such as a generalized additive models (Beck and Jackman, 1998), Bayesian model averaging
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(Bartels, 1997; Montgomery and Nyhan, 2010), neural network (Beck, King and Zeng, 2000),

random forest (Athey, Tibshirani and Wager, 2019; Hill and Jones, 2014; Montgomery and

Olivella, 2018), kernel regression (Hainmueller and Hazlett, 2014), and more (e.g. Argyle

et al., 2023; Grimmer, Messing andWestwood, 2017; Kleinberg et al., 2018; Torres and Cantú,

2022). Machine learning offer flexibility, an especially appealing feature when the researcher

is uncertain about model specification. The disadvantages are that these models are difficult

to interpret and often provide no natural estimates of uncertainty for key quantities of

interest. In addition, situations where researchers have strong beliefs they wish to encode into

the model, it can be difficult or even impossible to do so. Even tasks such as including fixed

effects or interaction terms can require customized software, since existing implementations

will not, for instance, include lower-order terms or all fixed-effects dummies (Montgomery

and Nyhan, 2010). In short, these models can be too agnostic when we are already aware of

some (but not all) potential issues.

To address this dilemma, this paper introduces Gaussian Process Regression (gpr) (Ras-

mussen and Williams, 2006) for Political Science research. While these models have been

widely studied in computer science (Aglietti et al., 2020; Alaa and van der Schaar, 2017;

Arbour et al., 2021; Flaxman, Neill and Smola, 2015; Hensman, Fusi and Lawrence, 2013;

Rasmussen and Williams, 2006; Reynolds, 2009; Witty et al., 2020), they remain remarkably

rare in Political Science (but see Chen, Garnett and Montgomery, 2023; Gill, 2021a,b). We

argue that gpr is a machine learning framework that offers a satisfying compromise; re-

searchers can encode domain knowledge when available but allow for high levels of flexibility

where appropriate. Moreover, as a Bayesian model, gpr lends itself naturally to producing

meaningful measures of uncertainty for key quantities of interest such as marginal effects.

Indeed, as we demonstrate below, many of the linear models already favored by quantitative

scholars are themselves special (restricted) examples of a gpr model. Thus, adopting the

gp framework may represent a win-win, simply adding flexibility to existing practice.

To motivate gpr, we begin by briefly discussing alternative approaches to model building
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in the social sciences. We then provide an overview of the gr framework and approach to

inference, giving special attention to how gpr is closely related to standard methods in the

field. We then report a simulation study to compare the method to standard practices in

the field, before reporting to applications that illustrate how to leverage the power of gpr

to build flexible, but structured, models in the presence of clustering and spatio-temporal

autocorrelation. These examples are designed to illustrate how we can begin with a simple

linear model, and extend it naturally to account for increasingly complex problems, all within

the same framework. All estimation is done in the gpytorch framework, which allows for

modular construction and fast estimation.1 We conclude with a discussion of avenues for

future work.

Throughout, our aim is to provide an approachable overview of gpr for a social science

audience, something that is currently missing from the literature. This is especially impor-

tant because the gp literature is primarily aimed at building predictive models; standard

quantities of interest to social scientists are not discussed (Rasmussen and Williams, 2006).

2 Flexible but structured models

Generically, model building based on observed covariates can be denoted,

yi = f(xi) + εi, (1)

where yi is the outcome of interest for observation i, xi is a vector of predictive features, and

εi represents the error term. To begin, we make no assumptions about the structure of the

error term, leaving that to our later discussion of inference. Instead, our primary focus is on

the prior structure and assumptions we place on f(xi).
2

1Future versions of this paper will included detailed appendices with code and examples for applied
scholars to use.

2We can generalize the presentation by removing the error term and specifying the problem as yi =
g
(
f(xi

)
; θ), where g(·) is an inverse link function with ancillary parameters θ. However, this more generalized

presentation makes the exposition more cumbersome and adds little to our main argument.
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2.1 Approaches to model building

In the classic linear model, Equation 1 becomes

yi = xT
i β + εi. (2)

Here, f is just a weighted sum (linear combination) of the input vector xi, where the

“weights” are represented by the vector β. In this formulation, f is assumed to be a func-

tion within the function space spanned by {xi}. That is, we are assuming that f can be

approximated accurately by a linear combination of the observed covariates.

Where we need more flexibility in the functional form, we can also create a basis expan-

sion, ϕ(xi), including such things as squared terms, interactions, or even splines. In this

case, Equation 1 becomes,

yi = ϕ(xi)
Tβ + εi. (3)

While more complex, this formulations still assumes that f exists in the function space

spanned by the explicit inputs {ϕ(xi)}. That is, we are assuming that f can be approximated

by a linear additive combination of the transformed inputs.

A key advantage of this approach is that downstream inference is generally focused on the

regression parameters β. These are (to varying degrees) interpretable and also come with

well-established measures of uncertainty across the frequentist, Bayesian, and maximum

likelihood paradigms. The downside is that this model can introduce significant error when

f cannot be well approximated by ϕ(x)Tβ. In most settings, there are an extremely large

number of potential basis expansions to consider, and it is difficult for scholars to know when

they have identified a “good” approximation of f .

Automatic basis expansion. To address this challenge, scholars have increasingly re-

lied on flexible machine learning models that seek to automatically generate appropriate

basis expansions for Equation 3. Examples generalized additive models (GAM) (Beck and
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Jackman, 1998), random forests (Athey, Tibshirani and Wager, 2019; Hill and Jones, 2014;

Montgomery and Olivella, 2018), neural networks (Beck, King and Zeng, 2000), and double

or triple machine learning (Chernozhukov et al., 2018; Ratkovic and Tingley, 2023). Al-

though different in their details, these methods share a general structure where an algorithm

searches through a high-dimensional space of possible choices to identify a basis expansion

ϕ(xi) and weights vector β such that f is well-approximated by ϕ(xi)
Tβ. The curse of di-

mensionality ensures that not all expansions can be considered, so each method follows its

own algorithmic heuristic to explore this space. Past research shows that, with appropriate

regularization and sufficient data, these models often faithfully approximate f and make

accurate predictions of {yi}.

While attractive in principal, there are at least three drawbacks to this approach in

practice. First, model outputs from these machine learning models are very difficult to

interpret. While the final model structure ϕ(xi)
Tβ is still a linear model, the automatic

approach to basis expansion almost ensures that the β parameters themselves will be at best

distantly related to the substantive quantities of interest. So, for instance, random forests

offer nothing like a regression coefficient that captures the average marginal relationship

between a raw input and the outcome even though it is simply a weighted summation of

basis expansions.

Second, even where such quantities can be calculated (e.g., via simulation), they often do

not come with appropriate measures of uncertainty. For example, even simple models such

as the LASSO models are unable to provide valid standard errors (Casella et al., 2010). In

some cases, it is possible to approximate standard errors using jackknife or bootstrapping

algorithms (e.g., Sexton and Laake, 2009). However, even where this is not computation-

ally prohibitive, methods such as bootstrapping can become immensely complex in applied

settings. For instance, when data exhibits clustering or spatiotemporal autocorrelation, boot-

strapping methods must be adjusted in ad hoc ways to account for the non-independence

between observations (Cameron, Gelbach and Miller, 2008; Esarey and Menger, 2019; Jack-
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son, 2020).

Third, as they are implemented, these algorithms are so agnostic that they typically do

not allow researchers to encode a priori knowledge into their estimation procedure. With

panel data, for instance, we can account for unit-level and time-level shocks by adding

random effects to the standard linear model. Now also indexing by t, Equation 1 becomes,

yit = ϕ(xit)
′β + ui + vt + εit, (4)

where ui and vt are assigned some prior structure.3 However, models such as random forests

are extremely difficult to adjust for these settings, offering no way to ensure the model is

accounting for spatial or temporal dynamics.

2.2 Related work

To sure, gpr is not the only machine learning model that of interest to Political Science.

Indeed, these methods have become increasingly common across Political Science to analyze

datasets large (e.g. Imai, Lo and Olmsted, 2016) and small (e.g. Broniecki, Leemann and

Wüest, 2022). It has been intuitively used for prediction (e.g. Cranmer and Desmarais, 2017;

Muchlinski et al., 2016; Streeter, 2019), but those predictive powers have also been extended

as proposed solutions for when data is sparse or missing (Chen, Garnett and Montgomery,

2023; Ratkovic and Tingley, 2017), to construct variables (e.g. Carroll and Kenkel, 2019; Chiu

and Xu, 2023; Fong and Tyler, 2021; King, Pan and Roberts, 2017; Knox and Lucas, 2021;

Mitts, Phillips and Walter, 2022), and to build datasets (e.g. Barari, Lucas and Munger,

2021; Gohdes, 2020). Less common, but of great interest to social science scholars, is the use

of machine learning for estimating treatment effects (e.g. Fong and Grimmer, 2023; Grimmer,

Messing and Westwood, 2017; Knox, Lucas and Cho, 2022; Ratkovic and Tingley, 2017).

As noted above, a particular body of work has specifically focused on on using machine

3In this setting, fixed effects models are simply where we place a white noise prior on these parameters.
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learning to building more robust and flexible models to test substantive claims. This liter-

ature focuses on three key and inter-related concerns: how to choose covariates, choosing

optimal specifications, and how to compare competing models with different specifications.

For example, in regards to the first concern, neural networks, random forests, and similar

methods assign weights to different covariates to maximize an objective function, essentially

“pruning” the set of covariates to only include the best predictors of the outcome (Athey,

Tibshirani and Wager, 2019; Beck, King and Zeng, 2000; Hill and Jones, 2014; Montgomery

and Olivella, 2018; Torres and Cantú, 2022). Alternatively, other methods, such as gradi-

ent boosting, weight the individual data points (Kleinberg et al., 2018). Beyond covariate

choices, researchers also face the question of how to optimally fit a model, especially when

the data exhibits non-linear relationships. For example, GAMs allow researchers to choose

any non-parametric function for each independent variable, accommodating non-linearity

and other arbitrary relationships (Beck and Jackman, 1998). Model averaging methods are

designed to allow researchers to combine insight from multiple model configurations without

having to choose “the best” (Bartels, 1997; Grimmer, Messing and Westwood, 2017; Mont-

gomery and Nyhan, 2010). gpr, however, is particularly attractive because it addresses all

three of these concerns in a single framework by finding the optimal distribution over an

infinite number of functions of any specification and any combination of covariate weights.

Indeed, gps are in the class of models called “universal approximators,” meaning (roughly)

that given enough data they can always accurately learn f even if the kernel is incorrectly

specified.4

The work most similar to our own is kernel regularized least squares (krls) (Hainmueller

and Hazlett, 2014; Mohanty and Shaffer, 2019) and the kernel smoothing estimator (Hain-

mueller, Mummolo and Xu, 2019; Li and Racine, 2010). krls in particular is mathematically

very similar to basic gpr, although it comes from the frequentist tradition. A related litera-

ture uses kernels within a matching framework for causal estimation (Fong, Hazlett and Imai,

4The most commonly discussed universal approximator models are neural networks. Remarkably, Lee
et al. (2018) shows that a single-layer neural network with an infinite number of nodes is itself a gp.
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2018; Hazlett, 2020; Hazlett and Xu, 2018). This ties closely to gpr since, as we show below,

it is possible to characterize gpr predictions for counter-factual values as a weighted sum of

observations, where weights are assigned via “closeness” in a kernel. Another related line of

work is triple machine learning (Ratkovic and Tingley, 2023), which also seeks to leverage

the flexibility of machine learning methods while maintaining many of the advantages of the

standard linear models.

Relative to existing kernel methods, the advantage of gpr is that it offers us a way

to systematically build models that include structure when it is needed, but can be highly

flexible where theory and prior beliefs provide limited guidance. We can assume functional

forms are linear and additive, non-linear and smooth, or anything in between. We can

impose sharp restrictions on some parameters, assume the function is strictly additive in

covariates, or we can allow for high-level interactions and only loose expectations about

how functional forms will be shaped. Moreover, as we illustrate below, gpr is modular,

allowing us to start simple and add complexity, all while providing a coherent method for

comparing alternative model specifications via Bayesian model selection methodologies. In

contrast, krls and related methods have primarily been implemented for experimental or

cross-sectional settings. For instance, we are aware of no extensions that would make it

appropriate for building a model for panel data.

In addition, since gpr is a Bayesian model, it is relatively straightforward to either derive

or construct common quantities of interest from the posterior, which come with natural

measures of uncertainty. In contrast, implementations for krls and related kernel models

rely on bootstrapping methods for standard errors, which can become highly inaccurate in

settings with complex error structures.

The goals of triple machine learning are similar to our own, in that we can leverage the

power of flexible models but retain the simplicity of the classic linear modeol. However, the

method itself is very different requiring an extensive procedure (including multiple splits in

the data) with the goal of identifying an optimal basis expansion {ϕ(xi)} that allows us
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to approximate f . gpr, however, follows a completely different approach that allows us to

avoid the problem of constructing a covariate set altogether.

3 Gaussian process regression

gpr is a Bayesian nonparametric approach that seeks to sidestep the issue of basis explo-

ration and selection by placing a prior on the function f itself, not on specific regression

parameters (e.g., β).5 The goal is choose a prior structure that is flexible, but still encodes

prior knowledge about the DGP. An additional concern is to do so while remaining mathe-

matically (or at least numerically) tractable. This is achieved by (i) marginalizing6 out β and

(ii) re-representing the problem so inference is conducted not using the (possibly infinitely

large) basis expansion space {ϕ(xi)}, but rather the much more tractable input feature space

{xi}.

In this section, we provide a high-level overview of the method, beginning with model

specification and moving to inference and interpretation. We then provide a short simulation

study before moving to our applications.

3.1 Basic model specification

Letting fi = f(xi) and assuming we have n observations, we let

{fi} ∼ GP(0;K). (5)

Here GP(·) denotes a Gaussian process prior, which is equivalent to an n-dimensional mul-

tivariate normal prior. Thus, 0 is a vector of length n filled with zero and K is an n × n

5Bayesian nonparametric models have become increasingly common in the social sciences, but primarily
based on Dirichlet process priors rather than gps (e.g., Bisbee, 2019; Moser, Rodŕıguez and Lofland, 2021;
Shiraito, Lo and Olivella, 2023).

6You can, if you wish, still include such parameters but they are unnecessary and will be problematic
with high-dimensional datasets.
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positive-definite covariance matrix. For reasons that become clear below, we refer to this is

the kernel matrix or kernel covariance matrix.

At a very high level, there are three properties of gp models that make them especially

useful.7 First, any linear model with an explicit basis function can be represented as a gpr

with a specific kernel (Rasmussen and Williams, 2006). Consider the linear formulation

ϕ(xi)
Tβ with prior β ∼ N(0,Σβ) on our regression coefficients. For any two observations i

and j, we can show that (fi, fj) are jointly normal with mean 0 and covariance ϕ(xi)
TΣβϕ(xj)

(Rasmussen and Williams, 2006, p. 14). By extension, the entire regression function model

can then be re-represented as

{fi} ∼ GP
(
0,Klm

)
, (6)

where the ijth element of Klm is k(xi,xj) = ϕ(xi)
TΣβϕ(xj). Rasmussen and Williams (2006)

show that this result generalizes such that any linear model8 based on explicit set of inputs

can be re-represented as a gp. Intuitively, what this means is that model building is no longer

about specifying the correct linear basis expansion (viz. choosing covariates, interactions, or

polynomial terms), but rather about setting up the correct covariance kernel K.

Second, using the “kernel trick”, any gp model can be specified as a function of the un-

transformed input vectors {x} with no need for any regression parameters β. This feature

results from the fact that any model that is defined entirely based on the inner product of a

transformation of raw features can be re-represented as a function of the original unmodified

features using a kernel function k(·, ·). Generically, ψ(xi) ·ψ(xj) = k(xi,xj), where ψ(·) is a

re-representation of x. For example, in the case of the basic gpr shown in Equation 6, we

see that the ijth element of the covariance matrix is ϕ(xi)Σβϕ(xj). Letting ψ(x) = Σ
1/2
p ϕ(x),

we can see that the appropriate kernel function that corresponds exactly to this model is

k(xi,xj) = ψ(xi) · ψ(xj). This again generalizes such that any linear model with an explicit

basis function can be re-represented purely as a function of the input features through an

7This section relies heavily on results in Rasmussen and Williams (2006) Chapters 2 and 4.
8This result depends on placing Gaussian priors on the model parameters β.
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appropriate kernel function k(·, ·).

This second result is primarily useful in that we have removed consideration (and esti-

mation) of the β parameters. In practice, using this result directly would still require us to

commit to some model specification via an explicit basis expansion. From this, we could de-

rive the corresponding kernel. This mathematical feature can sometimes be useful by itself,

since the kernel representation may be more computationally tractable in high dimensional

settings.

However, the third and most remarkable feature of gp models is that we can flip this

logic on its head by choosing a kernel function that encompasses a space of potential basis

expansions. That is, we can move away from specifying ϕ(·) entirely, instead choosing a kernel

function k(·, ·) that represents the class of basis expansion we wish to consider. Amazingly,

there are many well-studied kernels that correspond to infinitely large basis expansions –

something that would be impossible to specify or even consider in a traditional framework.

Moreover, the kernel requires only the raw input vectors {xi}, which typically have a much

lower dimensionality than the basis expansion.

A concrete example is helpful. The most common kernel is the squared exponential (se)

function9,

k(xi, xj) = σ2 exp
(
− (xi − xj)

2

2l2
)
,

where σ and l are hyperparameters discussed below. Choosing this kernel is equivalent

infinite-dimensional basis expansion of xi.
10 Substantively, it encodes the assumption that

we expect f to be very smooth, but can otherwise take on any shape. With this, we can

build models that are highly flexible; far more flexible than any standard linear model will

allow.

In total, gpr allows us take a very different approach to model building. Instead of

trying to find the “correct” model specification or allowing an algorithm to search through a

9In other literatures this is termed a radial basis function (RBF) or a Gaussian kernel.
10In future versions of this paper, we will provide a short appendix summarizing common kernels in the

literature. See Rasmussen and Williams (2006) Chapter 4 for an introduction.
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space of possible feature representations, we instead focus on specifying a covariance kernel

K that encodes our beliefs about the data generating process. Kernels can correspond to

explicit assumptions, such as the basic linear regression example above. Alternatively, they

far more agnostic and flexible, such as the se that corresponds to an infinitely large basis

expansion. And, as we show below, we can construct kernels that have both structure and

flexibility as suits the specific application.

3.2 Encoding a priori knowledge

An additional feature of gpr is that it is relatively straightforward to customize for specific

settings, largely due to the fact that affine transformations of Gaussians are also Gaussian.

So, for instance, we might begin with a priori expectations that f will take on a specific

shape (e.g., linear) but wish to allow it to deviate from linearity when appropriate.

To do this, we can specify a mean function E(f(x)) = m(xi), that encodes our expecta-

tions. Our gpr then becomes

{fi} ∼ GP ({m(xi)},K). (7)

If m(·) includes additional parameters (e.g., m(x) = xTβ), these will also need to be esti-

mated. While this is feasible, we can also marginalize out the mean function into a new gpr

with a different kernel, {fi} ∼ GP (0,Kalt)

Further, we can build more complex models when needed by combining gps. So, for

instance, we may wish to include unit and time-level random effects as in Equation 4. As-

suming Gaussian hierarchical priors, this can be written as

{fi} ∼ GP(0,K) + GP(0,Ku) + GP(0,Kv),

which becomes

{fi} ∼ GP(0,K+Ku +Kv),
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The kernels Ku and Kv could be chosen to reflect assumed independence, or to encode

additional structure (e.g., smoothing over geography or some other covariate).

More interestingly, we could place independent gp priors on each unit, reflecting the

assumption that E(fi) should move smoothly over time. As we illustrate below, this is (yet

again) another gp with a slightly different kernel specification. This would be analogous to

a hierarchical trajectory model, but without any assumed functional form for the unit-level

movement through time. This is just one configuration of a gp kernel that would be very

difficult to specify and implement in a traditional framework, but is easily incorporated into

a gpr.

3.3 Inference, errors, and interpretation

Thus far we have focused entirely on specifying the gp prior on f , ignoring the error term ϵi

and posterior inference. To address these issues, we begin by assuming Gaussian error. We

return to the issue of non-Gaussian likelihoods below.

To calculate our posterior, we return to the basic formulation of {yi} ∼ f(xi) + ϵi, but

now we add the assumption that ϵi ∼ N(0, σ2
noise). Since Gaussians are additive, we can see

that cov(yi, yj) = k(xi, xj) + σ2
noiseI(i = j), where I(·) is the usual indicator function, which

is one when i = j and zero otherwise. In matrix notation this is

cov(y) = K+ Iσ2
noise.

Thus, the complete likelihood is

y ∼ GP(0,K+ Iσ2
noise), (8)

where σ2
noise is a hyperparameter. We can write the likelihood function more generally as,

p(y|f ,X, θ), where θ is the collection of σ2
noise and any hyperparameters in K.

In standard Bayesian models, the goal would then be to reverse this to find the posterior
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distribution, p(f |X,y, θ). For social science purposes, however, this specification is not

directly useful as it would characterize f only at the observed values. For many quantities

such as first-differences or causal effects, we will want to understand f at a broader set of

values including those not yet observed. That is, we need to extract posterior estimates

for f both at observed locations in our data but also at hypothetical locations where are

covariates take on a different (hypothetical) value. For instance, we might want to know

how the expected outcome, E(fi|D, θ), will change in a response to a one unit increase in

some predictor for a specific unit.

To do this, we will introduce the notation that X represents the matrix of observed

covariates and X∗ represents some set of observed/unobserved values we want to consider.

We can then let K(X,X) be the kernel matrix where the ijth element is k(xi,xj). We can

also specify K(X∗,X), where the ijth element represents k(x∗
i ,xj). Our goal is to estimate

the posterior for {f∗} = E(y∗|X,y,X∗, θ). With this notation, we can then specify the joint

distribution of the data and f ∗ as:

y

f∗

 ∼ GP

0,

K(X,X) + Iσ2
noise K(X,X∗)

K(X∗,X) K(X∗,X∗)


 . (9)

Using standard Gaussian identities, and letting D = (y, {xi},X∗), we can then derive the

conditional distribution

f∗|D, θ ∼ GP
(
µf∗|D,θ, Kf∗|D,θ

)
, (10)

where

µf∗|D,θ = K(X∗,X)
[
K(X,X) + Iσ2

noise

]−1
y (11)

Kf∗|D,θ = K(X∗,X∗)−K(X∗,X)
[
K(X,X] + Iσ2

noise

]−1
K(X,X∗) (12)

and K(X,X) + Iσ2
noise is an n × n matrix. This inversion is the most computationally

expensive part of the algorithm.
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Note that in this construction E(f∗i |D, θ) in Equation 11 is a function only of the kernel

outputs and the vector observed outcomes y. Let wi be the i
th element ofK(X∗,X)

[
K(X,X)+

Iσ2
noise

]−1
. Then, E(fi|D, θ) is,

n∑
i=1

wiyi.

Intuitively, this means that any predicted hypothetical (or counterfactual) value, is estimated

as the weighted sum of the outcomes where the weights reflect proximity in the learned kernel

space. This relates gpr back to the kernel-weighted matching methods discussed above, since

all counterfactual values are implicitly weighted sums of the observed outcome values.

With these quantities in hand, we can easily calculate quantities of interest such as fi−f ∗
i

for a single individual or averaging these values over the entire observed population to get

first differences. Indeed, since these are again affine transformations of a gp, these quantities

are themselves gps with analytical solutions.11

Amazingly, we can use this same approach to calculate the average marginal effects since

differentiation is itself a linear operator (See Rasmussen and Williams, 2006, Section 9.4).

Let ∂fi
∂xdj

be the partial derivative of a function along dimension d. For any observation pair

ij, we have

cov

(
fi,

∂fj
∂xdj

)
=
∂k(xi,xj)

∂xdj

, cov

(
∂fi
∂xdi

,
∂fj
∂xdj

)
=
∂2k(xi,xj)

∂xdixdj

. Which means we can derive the full posterior as,

 f |D

∇f |D

 ∼ GP


 µf |D

∇µf |D

 ,
Kµ|D ∇KT

µ|D

∇Kµ ∇2Kµ


 , (13)

With this result, we can again easily calculate quantities such as the marginal effect of a

covariate at a specific location or average this quantity across observed and/or counterfactual

11In future versions of this paper we will provide an appendix with the full posteriors for these and other
quantities of interest.
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values.

While gp models have closed-form solutions with Gaussian errors, the posteriors must

be approximated for other error structures (Rasmussen and Williams, 2006). However, here

we can lean on nearly two decades of work that has provided a wide array of methods (e.g.,

Laplace approximation, expectation propagation, variational inference, Markov chain Monte

Carlo sampling) to approximate this posterior with varying levels of accuracy and compu-

tational complexity (Brooks et al., 2011; Girolami and Rogers, 2006; Hensman, Matthews

and Ghahramani, 2015; Rasmussen and Williams, 2006; Titsias, 2009). Perhaps the simplest

approach is Laplace approximation, which can provide good (and fast) approximations when

the posterior is well behaved and unimodal.

3.4 Hyperparameters, model selection, and regularization

As discussed above, the gpr framework allows us to re-represent models such that we can

marginalize out standard regression parameters. Instead, the modeling problem becomes

selecting the correct kernel. Obviously this does not come without cost, as the kernel(s)

have hyperparameters that must somehow be specified. For instance, if using the se kernel

for noisy observations we have θ = (σ, l, σ2
noise).

12

There are a number of ways to select these parameters. Most simply, we could choose

them based on either a priori knowledge or through some form of cross-validation. However,

this first option is likely to be difficult to justify, and cross-validation can be extremely

computationally expensive for all but the smallest datasets.

A more principled Bayesian approach would be to place a prior on θ, p(θ), and then use

standard Bayesian methodologies to marginalize these parameters away. This can be done

using some form of Markov chain Monte Carlo (MCMC) sampling or Laplace approximation.

This would allow us to leverage the posterior on f while fully incorporating our uncertainty

12Note that in this presentation l is a scalar. However, in many cases it may be desirable to estimate a
separate l for each input dimension or to use an automatic relevance determination kernel.
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about θ.13

In practice, however, these approaches can be very expensive computationally, especially

with larger datasets. We have found that our models perform adequately with the simpler

approach of using θMAP , which are the maximum a posteriori estimates. Intuitively, this

can be considered an “empirical Bayes” approach where these hyperparameters are selected

to maximize the marginal loglikelihood,

log p(y|X, θ) = −1

2
yTK−1y − 1

2
log |K| − n

2
log 2π. (14)

Note that only the first component of this equation includes the outcome y. The latter

components can be interpreted as a complexity penalty that can serve to create natural

Bayesian regularization to avoid overfitting. Thus, Rasmussen and Williams (2006, p. 111)

state:

Notice that the trade-off between data-fit and model complexity is automatic;

there is no need to set a parameter externally to fix the trade-off. ... Thus,

a model complexity which is well suited to the data can be selected using the

marginal likelihood.

Finally, note that Equation 14 (the marginal log-likelihood) can be easily used to sum-

marize the model, which facilitates direct calculations of Bayes factors for model testing.

Likewise, we can also calculate common fit statistics such as the Bayesian information crite-

rion (bic).

4 Applications

In this section, we show a simulation and two applications of gpr. First we present the

findings from a simulation study, where we show that across several model diagnostic statis-

13In future versions of this paper, we hope to compare alternative methods of handling hyperparameters
in gpytorch.
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tics gpr performs no worse and often better than fixed effects and random effects for panel

data. Moving on to the applications, we first show how gpr can be used with panel data to

challenge recent findings in a debate on international organization and human rights. In the

second application, we add a spatial component to gpr with an example on accountability

and infant mortality.

4.1 Simulation

Figure 1: Model fit statistic comparisons with 95% confidence interval for RMSE (upper left),
coverage (upper right), log likelihood (lower left), and evidence (lower right), between two-
way fixed effects (purple), two-way random effects (blue), and gpr (orange) for simulated
times series data. Across all statistics, gpr does no worse and often better than two-way
fixed effects and two-way random effects.
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To show the benefits of gpr, we ran a times series simulation study with two covariates

(D = 2), 50 observations (N = 50), and 20 time periods (T = 20). The data generating

process for the outcome yit is a non-linear covariate effect and an individualized time effect.
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The general data and model set-up can be summarized as follows:

xid ∼ N(0, 1), d = 1, 2 (15)

yit = f(xi) + gi(t) + ε (16)

f(xi) = x2i1 − xi1 × xi2 (17)

gi(t) ∼ GP (0, Kt), i = 1, ..., N (18)

Kt(t1, t2) ∼ exp

(
− 1

2
(t1 − t2)

2

)
(19)

ε ∼ N(0, 0.1) (20)

Note that f(xi) is non-linear but static across time. The time effect, gi(t), is unit specific

and generated from a Gaussian Process.

We build a simple Gaussian process model that takes covariate , time and unit-index as

inputs with the following kernel structure:

f(x, t, i) ∼ GP(0, Kx +Kt ∗Ki) (21)

Kx(x, x
′) = ρ2x exp(−

1

2ℓ21
(x1 − x′1)

2 − 1

2ℓ22
(x2 − x′2)

2) (22)

Kt(t1, t2) = ρ2t exp(−
1

2ℓ2t
(t1 − t2)

2), Ki(i, i
′) = 1 if i == i′ else 0 (23)

In this simulation, we focus on the static marginal effect and hence decompose the kernel

structure to the sum of the covariate kernel and the time kernel. The model could also

implement a joint kernel of the covariates and time. We use a zero mean function for

simplicity.

We simulated three models: a two-way fixed effects model, a two-way random effects

model, and a gpr model. More precisely, we define the two-way fixed effects model and the

two-way random effects model, respectively, as

yit = β1xi1 + β2xi2 + ai + bt + ε (24)
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yit = β1xi1 + β2xi2 + ai + bt + ε (25)

ai ∼ N (0, σ2
a) (26)

bt ∼ N (0, σ2
b ) (27)

We then compared key statistics for model fit: RMSE, coverage, log likelihood, and evidence

(marginal likelihood). Theses comparisons, including the 95% confidence intervals, are vi-

sually shown in Figure 1, where two-way fixed effects is shown in purple, two-way random

effects is shown in blue, and gpr is shown in orange. In all cases, gpr does no worse and

often better than two-way fixed effects and two-way random effects. More specifically, gpr

significantly outperforms two-way fixed effects and two-way random effects in terms of log

likelihood for both covariates and evidence.

Additional statistics from the simulation can be found in the Supplementary Material.

4.2 International shaming and human rights

Scholars debate whether the international community “naming and shaming” a country

about its human rights practices might be counterproductive, potentially leading to a back-

lash and worsening human rights conditions. In one of the most cited papers from this

debate, Hafner-Burton (2008) finds that when Amnesty International, an international hu-

man rights organization, publicly shames a country about their physical integrity rights,

then practices around physical integrity rights will improve while practices around political

rights will deteriorate. However, Strezhnev, Kelley and Simmons (2021) fail to replicate her

results. In a modified specification, they find that Amnesty International’s public shaming

on physical integrity rights leads to an increase on the physical integrity rights index the

following year, where a higher score indicates worse practices.

In this example, we demonstrate the gp framework for multiple time series using the

dataset from Strezhnev, Kelley and Simmons (2021), which corrects some of the original

dataset from Hafner-Burton (2008). This dataset spans from 1984 to 2001 and covers 140
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countries.14. The independent variable of interest is AIShamet, which is binary and indicates

whether Amnesty International shamed a country for its physical integrity rights practices

in a given year t. The dependent variable of interest is PIRIt+1, the physical integrity rights

index in the following year as constructed by Hafner-Burton (2008). PIRI is a composite

index of repression indices obtained by adding together the scores for the four physical

integrity measures: killing, torture, imprisonment, and disappearances. This yields a variable

that ranges from 0 (no violations on any of the four measures) to 8 (worst scores on all four

measures), though we follow previous work in treating it as continuous.

The original model from Hafner-Burton (2008) includes up to three lags of the dependent

variable that Strezhnev, Kelley and Simmons (2021) found to be insignificant with the up-

dated data, so we follow the lead of Strezhnev, Kelley and Simmons (2021) to only include

one lag. Therefore the baseline linear model can be specified as

PIRIi,t+1 =AIShamei,t + PIRIi,t + CATi,t + ICCPRi,t +Democracyi,t

+ log(GDPperCapita)i,t + log(Pop)i,t + CivilWari,t +Wari,t + ut + εit (28)

where AIShame indicates whether Amnesty International shamed country i in year t; PIRI is

the physical integrity rights index for country i in year t; CAT and CCPR are indicators for

whether country i in year t has signed the Convention Against Torture or the International

Covenant on Civil and Political Rights, respectively; Democracy is an indicator for whether

country i has a Polity IV score above 6 in year t; log(GDPperCapita) is the logged GDP in

country i in year t; log(Pop) is the logged population in country i in year t; CivilWar and

War are indicators for whether country i in year t is experiencing a civil war or interstate

war, respectively; ut represents year fixed effects; and εit is an error term.

In this case, we show the additive properties of gp models by constructing a gp for units

14We remove New Zealand and the Netherlands for our analyses since they have a perfect score for the
full time period, which slightly changes the baseline results
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over time, covariates, and our main variable of interest:

PIRIi,t+1 = fi(t) + f(xi,t) + f(ai,t) + εi,t (29)

where fi(t) is nonlinear unit trends, f(xi) is the gp for the covariates, f(ai) is the gp for the

treatment effect of Amnesty International’s shaming, and εit is independent Gaussian error

term. We place an independent gp prior on the unit-level time trends:

fi ∼ GP
(
0,Ku

)
(30)

where Ku follows the squared exponential kernel with time as the only input feature (year).

This allows us to exclude both the lagged value and the year fixed effects. The hyperparam-

eters are set to standard starting values and then updated via MAP.15

Turning now to the covariates, we specified a zero mean function and then created a

kernel by adding two sets of squared exponential kernels together – one set for continuous

covariates, demarcated with the subscript c ∈ {GDP,Pop,PIRI}, and one set for binary

covariates, demarcated with the subscript b ∈ {CAT,CCPR,Dem,Civil,War}. Like before,

we set the to standard starting values, which were updated during the modelling process

using MAP.16

Finally, we also modeled the “effect” of Amnesty International’s shaming practices as:

f(a) ∼ GP (0,Ka) (31)

where we again use the squared exponential kernel as our covariance function, and set the

parameters σ2 and ρ to standard starting values which were updated during the modeling

15This gives us the hyperparameters {σ2
i , σ

2
t , ρi, ρt} set to {0.25, 0.25, 4, 0.01}. The MAP values are

{0.72, 0.72, 4, 0.01}.
16For the continuous covariates, we have the hyperparameters {σ2

GDP , ρGDP , σ
2
Pop, ρPop, σ

2
PIRI , ρPIRI} set

to {4, 0.25, 4, 0.25, 4, 0.25}. The MAP values are {2.75, 0.012, 2.84, 0.012, 3.08, 0.011}. All binary covariate
hyperparameters {σ2

b , ρb} were set to {0.01,None}. The MAP values are {0.01, 0.69}.
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Table 1: Comparing results from linear model and gpr on the effect of shaming by Amnesty
International on a country’s physical integrity rights index.

Linear Model Results GPR Results

Effect SE t-value p-value Effect SE t-value p-value

AIShame 0.181 0.076 2.398 0.017 0.038 0.214 0.178 0.57

Model Evidence −3561.4 −3362.2
BIC 7360.5 6824.0

process using MAP.17

The results of our model and the baseline are shown in Table 1. Using gpr, we find that

shaming by Amnesty International leads to a statistically insignificant 0.0038 (se= 0.214, p >

0.1) point increase in the physical integrity rights scale. The effect size is almost one fifth the

size of the effect found in Strezhnev, Kelley and Simmons (2021), which found that shaming

lead to a 0.181 (0.076) point increase on the index. Regarding model fit, our gpr model has

slightly higher model evidence of -3362.2 than the original model (-3561.4) and a lower BIC

(6824 and 7360.5, respectively).

Beyond the different magnitude of the effect, gpr can be used to model individual country

trajectories, in essence tracking the trajectory of individual countries over time. Sample

country trajectories with the model are shown in Figure 2, where, in the upper left and

going clockwise, we show China, Turkey, South Africa, and Iran. In particular, these trends

show the relatively flat indices of China and Iran during this time, while Turkey’s practices

worsen and South Africa’s practices improve.

One concern with gpr is that it is so flexible that it may result in overfitting, leading

to poor predictive performance out of sample. To test this, we held out the last five years

(1996-2000) of data for 30 randomly selected countries and refitted both the gpr and the

linear regression models. We then used our revised models to predict out of sample the last

five years for each of the 30 countries. 3 shows six of of these countries, where the points

are the observed outcome values and the solid lines show the respective models predicted

17This gives us the hyperparamters {σ2, ρ set to {0.01, 0.25}. The MAP values are {0.01, 0.25}.
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Figure 2: Individual country trends for PIRI Scores as modeled by GPR for four random
countries. The solid lines show the estimated trend from GPR, the points show the observed
PIRI score, and the shaded region gives the 95% confidence region. Note that the gpr nicely
captures the non-linearity of the PIRI scores over time for countries that remain relatively
constant over the study window (Iran), decline or increase (South Africa and Turkey), or
are relatively volatile (China).
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trend and the shaded regions show the prediction intervals. The top panel shows prediction

data from the gpr model, and the bottom panel shows the prediction data from the linear

model. While the predicted values are similar across both models, the gpr predictions are

smoother with similar coverage – helpful properties when forecasting noisy data.

4.3 Accountability and infant mortality

In our second applicaiton, we show how the kernel structure of gpr allows us to easily add

spatial components to a times series analysis. The use of gpr for spatial analysis is not new

in Political Science (e.g. Monogan and Gill, 2016), but it is not widely used either. This

example further extends this nascent work to show how gpr can simultaneously model both

temporal and spatial effects. Specifically, we replicate a model from Lührmann, Marquardt

and Mechkova (2020), which uses infant mortality to validate a new measure of government

accountability.

The original model by Lührmann, Marquardt and Mechkova (2020) includes country

and year fixed effects to account for spatial and temporal dependence, as well as a variable

measuring the regional average of infant mortality. The original model can be mathematically

defined as

Infant Mortality = Accountability + Foreign Aid + ln(GDP/capita)

+ Economic Growth + Resource Dependence

+ Economic Inequality + ln(Population) + Urbanization

+ Political Violence + Communist

+ Regional Infant Mortality Average + Political Corruption Index

+ ui + vt + εit (32)

where ui is the country fixed effects and vt is the series of year fixed effects.

When replicating these spatial and temporal dependencies using GPR, we leverage the
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Figure 3: Prediction intervals using gpr (Panel A) and OLS regression (Panel B) for six
randomly selected countries: Croatia, Ghana, Ireland, Malawi, Mauritius, and Mexico. For
each plot, the y axis indicates the PIRI score and the x axis indicates the year. The points
show the observed data point, the solid line shows the predicted value, and the prediction
interval is shaded. While the predicted values are similar across both models, the gpr
predictions are smoother with similar coverage.

(a) gpr predicted (line) versus actual (point) PIRI scores

(b) OLS regression predicted (line) versus actual (point) PIRI scores
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Table 2: Comparing results from Lührmann, Marquardt and Mechkova (2020) and gpr on
the effect of the accountability on infant mortality

Linear Model Results GPR Results

Effect SE t-value p-value Effect SE t-value p-value

Accountability −4.34 0.35 −12.38 1.7e-24 −4.29 0.38 −10.87 2.2e-20

Model Evidence −15435.67 −10117.09
BIC 32664.42 1537.29

flexibility of the kernel to learn the optimal fit, doing away with the fixed effects and spatial

averages. In this case, the gpr model can be defined as

Infant Mortality = Accountability + Foreign Aid + ln(GDP/capita)

+ Economic Growth + Resource Dependence

+ Economic Inequality + ln(Population) + Urbanization

+ Political Violence + Communist

+ Regional Infant Mortality Average + Political Corruption Index

+ ui(t) (33)

ui(t) ∼ GP
(
bi, K(x) +K(t) ∗K(g)

)
(34)

where the gp is defined to have a zero mean, and each K follows the squared exponential

kernel, taking as inputs the model’s covariates, time, and longitude and latitude, respectively.

We again leverage the additive properties of Gaussian processes to combine the three kernels

together, multiplying the kernels for space and time to allow for maximum dependencies. The

hyperparameters are set to standard starting values and updated using MAP. The starting

values and MAP values are shown in the Supplementary Material.

For our analyses, we use the data from Cook, Hays and Franzese (2023), who also replicate

Lührmann, Marquardt and Mechkova (2020), since their data includes the latitude and

longitude necessary for the geospatial component of the kernel. The gpr gradient and linear
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regression results are shown in Table 2. Using the gp model, we find that a one unit increase

on the accountability index is associated with a 4.29 percentage point decrease in the infant

mortality rate, on average and all else constant. This is comparable to the effect found

in Lührmann, Marquardt and Mechkova (2020), which found that a one unit increase on

the accountability index was associated with a 4.34 percentage point decrease in the infant

mortality index. Our standard error is also comparable to the original finding. Regarding

model fit, our gpr model has higher model evidence and a lower BIC score.

Despite these seemingly similar coefficients and standard errors, these improved fit statis-

tics (model evidence and BIC) are important. In practice, they allow the gpr model to offer

individual country estimates that are much more similar to the observed values than the

linear model would allow. This similarity is demonstrated in Figure 4, which compares

the observed Accountability measure (top panel) to the estimates from the linear regression

(middle panel) and the gpr (bottom panel). Since the measure varies across time and space,

we are using 1986 as an example snapshot in time since it is the mean year in the dataset.

Note that Accountability is an aggregation of several positive value indices and therefore

can only take on positive values, however the linear model estimates some countries to have

negative values. In contrast, the map showing the estimates from the gpr is very similar

to the map showing the observed measures of accountability. This demonstrates the utility

of the country trend ui(t) that incorporates space and time through its kernel function over

linear two-way fixed effects when examining estimates at the country level.

5 Conclusion

In this paper, we have shown how gpr allows social scientists to model quantities of interest

in a structured yet flexible framework. By seamlessly integrating prior knowledge and obser-

vations, Gaussian processes empower researchers to make informed predictions and insights

while maintaining appropriate bounds for underlying uncertainty. Since our many models

28



Figure 4: Comparison of the observed accountability measure (Panel A), the estimated
accountability measure from a linear model (Panel B), and the estimated accountability
measure from a gpr model (Panel C), using 1986 as an example snapshot in time. Note
that the linear model estimates negative values, which are invalid for the accountability
measure, while the gpr estimates are similar to the observed accountability measure.
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(a) Observed accountability across the world, 1986

LM Estimates, 1986
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(b) Linear model estimates for accountability across the world, 1986

GPR Estimates, 1986
0 to 50
50 to 100
100 to 150
150 to 200

(c) gpr estimates for accountability across the world, 1986
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already widely used in current literature are actually special cases of gpr, it offers a power-

ful framework for extending basic practices to allow for far more flexibility than traditional

le. This underscores the universality and broad applicability of the method, and potentially

moves the discipline toward a more cohesive understanding of the varied models in our ar-

senal. Thus, a primary goal for this paper is to provide an approachable explanation of this

framework.

As we continue to develop this paper, we hope to add several new components to help

make gpr more accessible to social scientists. First and foremost is to add more exam-

ples, including a cross sectional case, a single stream time series, and a model with binary

dependent variables. Key to these additional examples would be expanding the discussion

on kernel functions: there are many alternatives to the squared exponential kernel, and we

hope to help guide scholars through choosing the best kernel for their particular choices.

Furthermore, we hope to add an appendix explaining how to use the software gpytorch,

since admittedly it can have a steep learning curve.

We believe that gpr could also be integral in the development of new methods in Po-

litical Science. For example, gpr has been used to relax the parallel trends assumption

for difference-in-differences analysis with one treatment period (Chen et al., 2023), but this

could also be extended to differences-in-differences with staggered adoption or when units

enter and exit treatment status. We also believe that our current example demonstrating

gpr’s use for geospatial analysis is the most basic form, and that the kernel structure could

be refined to better leverage spatial effects. Given that gpr was initially designed for spatial

predictions in the mining industry (Cressie, 2015), we are optimistic about the potential ap-

plications to Political Science. More fundamentally, gpr could also provide an elegant way

to address the varied needs for interactions in Political Science through the kernel function.

Given the importance and widespread usage of interactions in Political Science, we believe

this deserves a stand alone paper.

In conclusion, we believe that Gaussian processes are a powerful analytical tool that
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embraces the complexities of Political Science and enriches social science’s methodological

arsenal. We believe that the relative complexity of these models is their key barrier to entry,

as this paper is an initial step in breaking down that barrier. With this greater understanding

and hopefully wider usage, the inherent advantages of flexibility coupled with interpretability

will contribute to more nuanced understandings of our discipline’s quantitative pursuits.

References

Acemoglu, Daron, Simon Johnson, James A Robinson and Pierre Yared. 2008. “Income and

Democracy.” American Economic Review 98(3):808–842.

Aglietti, Virginia, Theodoros Damoulas, Mauricio Álvarez and Javier González. 2020.
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A Supplementary Material

A.1 Additional Simulation Statistics

mean std model measure

0.313007 0.041923 2FE RMSE x1
0.95456 0.035763 2FE COVERAGE x1
-0.29531 0.306315 2FE LL x1
0.164036 0.020831 2FE RMSE x2
0.97152 0.019817 2FE COVERAGE x2
-0.42775 0.318487 2FE LL x2
0.325387 0.038425 2RE RMSE x1
0.86264 0.096159 2RE COVERAGE x1
0.834301 0.264644 2RE LL x1
0.160712 0.019385 2RE RMSE x2
0.90396 0.049791 2RE COVERAGE x2
1.012222 0.268905 2RE LL x2
0.162702 0.057474 GPR RMSE x1
0.98692 0.014851 GPR COVERAGE x1
1.474003 0.300649 GPR LL x1
0.070989 0.020534 GPR RMSE x2
0.9886 0.012162 GPR COVERAGE x2
2.134344 0.31437 GPR LL x2
-1.18376 0.073836 2FE EVIDENCE
-1.22316 0.074353 2RE EVIDENCE
0.49476 0.028307 GPR EVIDENCE
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A.2 Accountability and infant mortality hyperparameters
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A.3 First difference and AMCE under GP priors

Priors are essential in Bayesian methods as they encode either the initial belief of the pa-

rameters of interests or serve as regularization that penalizes overfitting. Here we derive

the analytical forms of our first-difference and derivative estimators for amce under our

gp framework. For the purpose of demonstration, we first consider a general gp prior

f ∼ GP(µ,K) on a d-dim input space X . WOLG, suppose we are interested in finding the

marginal effect of a binary variable x1 = 0, 1. As gp is closed under linear transformation,

the induced prior on first-difference estimator is

π̂(x1 = 1,x1 = 0;x−1) = f(x1 = 1,x−1)− f(x1 = 0,x−1) (35)

∼ GP
(
µ(x1 = 1,x−1)− µ(x1 = 0,x−1), (36)

K(x1 = 1,x−1;x1 = 1,x−1) +K(x1 = 0,x−1;x1 = 0,x−1)
)
(37)

For zero mean µ(x) = 0 and RBF kernel K(x,x′) = ρ2 exp
(
− (x−x′)2/2/ℓ2

)
, the induced

prior reduces to a zero-meaned Gaussian π̂(x1 = 1,x1 = 0;x−1) ∼ N (0, 2ρ2). Therefore,

the prior variance on the first-difference estimator is proportional to the output scales: the

larger ρ2 is, the flatter or more uninformative prior we have on the first difference.

Secondly, the amce under gp priors also reduces a Gaussian. Now assume x1 is contin-

uous, so amce at x1 = x,x−1 can be written as the derivative of f :

π̂(x1 = x,x−1) =
∂

∂x1

f(x1 = x,x−1) (38)

∼ GP
( ∂

∂x1

µ(x1 = x,x−1),
∂2

∂x1∂x′
1

K(x1 = x,x−1;x
′
1 = x,x′

−1)
)

(39)

For a linear mean function µ(x) = βTx and RBF kernel K(x,x′) = ρ2 exp
(
− (x−1 −

x′
−1)

2/2/ℓ2
)
exp

(
− (x1 − x′

1)
2/2/ℓ2

)
, we have again an induced Gaussian prior π̂(x1 =

x,x−1) ∼ N (β1, ρ
2/ℓ2). Again we can see that the larger ρ2 is, the flatter or more uninfor-
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mative prior we have on the derivative of f . In addition, the length sfcale ℓ inversely affects

the prior variance ρ2/ℓ2 on first derivative, meaning that the larger ℓ is, the smoother the

response surface becomes and the tighter the prior variance is.

A.4 GP kernels for common panel analysis models

Common panel analysis models can be written under GP framework. Suppose we have panel

data indexed by unit i and time t.

Panel model Original model GP model

Fixed effect (ungrouped) αi µ(i) = αi

Fixed effect (grouped) αg(i ∈ g) µ(i) = αi(i ∈ g)
Random effect (ungrouped) αi ∼ N (0, σ2

α) K(i; i′) = σ2
αI[i = i′]

Random effect (grouped) αg(i ∈ g) ∼ N (0, σ2
g) K(g; g′) = σ2

gI[g = g′]
Temporal effect γt µ(t) = γt

Clustered standard errors εg ∼ N (0, σ2
g) K(g, g′) = σ2

gI[g = g′]

Linear covariates βTx,β ∼ N (0,Σ) K(x,x′) = xTΣx′
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